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Abstract

This paper illustrates some pitfalls in the interpretation of flow visualisation images of delta wing
leading-edge vortices.  Numerical simulations of tracer particle trajectories in around straight and
helical vortices are presented, representing unburst and burst delta wing vortices respectively.  For
straight vortices, the appearance of the ‘smoke-ring’ effect in wind tunnel testing is analysed, and
shown to be unrelated to the size or presence of a viscous inner core in the vortex.  The role of the
swirl-induced radial pressure gradient in the vortex centreline trace seen in water tunnels is
demonstrated.  For helical (burst) vortices, the crossflow topology visualised with upstream tracer
injection is shown to depend on the vortex core size and the helix pitch.  Typical vortex helices are
close to a flow regime which can produce visualised flow structures resembling axisymmetric bubble
breakdowns.  It is postulated that the intermittent open-ended bubble burst seen in delta wing vortices is
in fact an artefact of the tracer flow visualisation technique, as transient disturbances temporarily reduce
the pitch of the fundamental helical burst structure.

List of Symbols

Conical vortex

a edge of outer vortex core, = r0/x
dP diameter of tracer particle
r, θ, x cylindrical coordinates
re equilibrium (smoke ring) radius
r0 radius of outer core
uF, vF, wF axial, radial, tangential fluid velocities
U0, V0 freestream axial and radial velocity
α Hall vortex swirl parameter
φ swirl ratio, = V0/U0

ρP tracer particle density
ρF fluid density
µ fluid viscosity
τV viscous drag parameter
τP density ratio, = ρP/ ρF

Helical vortex

a0 helix radius
CMS binormal velocity coefficient
CVT tangential velocity coefficient
k0 helix pitch, = p/2π
p helix pitch
r, θ, z cylindrical coordinates
R, Ψ, Z helical coordinates
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RΩ Rossby Number, ≡ swirl ratio
U∞ freestream velocity
VB, WB induced binormal and tangential velocities
VT helix translational velocity
Vtan crossflow tangential velocity
β filament inclination from centreline
κ curvature of vortex filament
Γ vortex strength
σ vortex core radius
τ non-dimensional pitch, = k0/a0

Ω helix rotational velocity

Introduction

The original impetus to the work reported here was given by Reference 1, which highlighted the
potential for misinterpretation in dye flow visualization of unsteady 2D shear flows by taking a simple
prescribed flowfield and using computer simulations of streaklines and timelines to demonstrate the
appearance of spurious (but plausible) flow structures.

The wide range of flow topologies seen in the published literature on visualisation of delta wing
vortices raised concerns that a similar phenomenon may be responsible for at least some of these
apparent flow structures.  For example, Figure 1 shows two typical delta wing flow visualisation images
obtained using (a) smoke in a low-speed wind-tunnel [3] , and (b) entrained air in a high-speed water
tunnel [4].  In the first, we see a tubular ‘smoke ring’ effect with a smoke-free void on the centreline,
but in the second we see a well-defined marking of the vortex core.  The ‘smoke ring’ radius is often
equated to the edge of the viscous inner core found in delta wing vortices [5], but there is no
experimental evidence for this hypothesis.

   

Figure 1 Typical vortex flow visualisation results using: (a) smoke in a wind tunnel [3], and (b) entrained air
bubbles in a water tunnel [4]

As a start in addressing these concerns, this paper presents some results from an ongoing study of the
effect of tracer particle characteristics on delta wing flow visualisation.  The approach used is similar to
that of Reference 1, using computer simulations of particle trajectories in prescribed flow fields
approximating to those seen in delta wing vortices.

The first part of this paper deals with the effect of physical particle characteristics (eg mass and drag) on
trajectories in a steady-state straight conical vortex.  This work extends the little-known analysis of
Reference 8 in order to elucidate the physical reasons for the differing images shown in Figure 1, and to
demonstrate that there is no correspondence between the ‘smoke ring’ radius and the viscous core size.
A more detailed description of the analysis and results of this section may be found in Reference 2.

The second part of this paper addresses the problem of flow visualisation for ‘burst’ vortices, with the
analysis based on the hypothesis that the fundamental structure of a burst delta wing vortex is helical
[6].  This hypothesis is based on flow visualisation studies that show that the ‘spiral’ form of vortex
burst predominates for delta wing flows, particularly in wind tunnel experiments (Figure 2).  On

(a)

(b)
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occasions an axisymmetric  ‘bubble’ burst is seen, but even here the internal flow within the bubble
often displays a helical structure [7].

Figure 2 ‘Bubble’ vs ‘spiral’ vortex breakdown [14]

As a first step, the time-varying burst vortex flowfield is modelled as a simple helical vortex of constant
radius and pitch, undergoing self-induced translation and rotation [9].  This analysis yields an
unexpected effect of the helix parameters on the cross-flow topology which may account for the
intermittent appearance of an apparent ‘bubble’ burst in delta wing flows.

Visualisation in Conical Vortices

Conical Vortex Flow Model

A Hall vortex model [5] was used to represent the outer core of a conical leading-edge vortex, since this
(a) gives a reasonable match to experimental data, and (b) unlike other popular vortex models specifies
all three velocity components.

non-dimensional radius, r/ax
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non-dimensional velocity, u/U0 
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Figure 3 Axial and tangential velocity distributions in a Hall vortex, with swirl ratio φ0 = 0.8

The axial, tangential and radial fluid velocity distributions in the outer core region are:
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where U0 and V0 are the axial and tangential velocity components respectively at the edge of the vortex
outer core (ie at r0 = ax).  α is the swirl parameter

( ) 121
5.02

0 −+= φα (2)

where φ0 is the swirl ratio V0/U0 at the edge of the vortex core.  Outside of r0, the flow is modelled as a
simple potential vortex with constant axial velocity U0, while for the purposes of this study the inner
viscous subcore was represented as a simple forced vortex (see Figure 3).

Equations of Motion

Assuming that the tracer particles are small rigid spheres, the forces acting on them are the: viscous
drag, lift, gravity, added mass (virtual inertia), hydrostatic pressure gradient, hydrodynamic pressure
gradient (buoyancy), and the Basset force.  However, for representative experimental conditions the
majority of these can be ignored [2], leaving only the viscous drag and the hydrodynamic pressure
gradient.

The viscous drag force was modelled using Stokes’ Law, while the hydrodynamic pressure gradients
can be derived directly from the Hall vortex model.  The resulting equations of  motion for a particle (in
cylindrical coordinates) are [2]:
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where τV is a parameter relating centripetal force to drag force, defined as:
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and τP is the particle/fluid density ratio:

F

P
P ρ

ρτ = (4b)

Typical Numerical Results

Figures 4 and 5 present some representative 3D simulation results for smoke particle trajectories around
a conical leading-edge vortex flow at typical low-speed wind tunnel test conditions.  Figure 4 shows the
effect of conical particle injection along the edge of the outer vortex core, equivalent to smoke injection
into the feeding shear layer (eg at the wing leading-edge).
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Figure 4 Tracer particle trajectories for conical particle injection at typical wind tunnel test conditions

The tracer particles appear to be spiralling inwards to form a ‘tube’ or ‘smoke ring’ effect similar to that
seen in Figure 1a, with the smoke ring increasing in size downstream.  The smoke ring effect can be
seen more clearly in the right-hand side of Figure 5, which shows the particle distribution at a given
chordwise point in terms of smoke density (relative to the seeding density).
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Figure 5 Relative smoke density in crossflow plane, showing the ‘smoke ring’ effect

Figure 6 presents some representative 3D simulation results for buoyant particle trajectories at typical
water tunnel test conditions.  In contrast to the wind tunnel results described above, no ‘smoke ring’
structure is seen.  Instead, the tracer particles follow the true radial velocity component much more
closely and migrate rapidly inwards to the vortex core where they accumulate.  The particle density on
the vortex centreline becomes very high, giving the clear core trace effect seen experimentally in Figure
1b.
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Figure 6 Tracer particle trajectories for conical particle injection at typical water tunnel test conditions
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Simple ‘Smoke Ring’ Model

The tracer particles are in radial equilibrium (at r = re) when the radial force acting on the particle is
zero.  Assuming that (a) tangential and axial velocity following errors are generally small, (b) wF is
small in relation to U0, and (c) outside the viscous inner subcore uF ≈ U0, some manipulation of
Equations (1), (2) and (3c) gives


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12
00  (5)

Reference [8] uses a slightly different approximation to arrive at a similar equation, but neglects the 1/τP

radial pressure gradient contribution.

Equation (5) can now be integrated with respect to chordwise location x to find the equilibrium (smoke
ring) radius
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Substituting for τV and τP from Equation (4) then gives

( )1
30 −≈ Px
P

e Re
d

r τφ (7)

where Rex is the fluid Reynolds Number based on chordwise location x.  Note that the vortex outer core
radius factor a does not appear in Equation (6) or (7).  Reference 2 shows that Equations (6) and (7)
compare well with the results of full 3D tracer particle motion simulation, and are consistent with the
limited experimental evidence available for smoke ring radii [8].

Hall’s analysis [5] of the behaviour of the viscous inner subcore shows that

x

inner
Re

x
r ∝  (8)

Comparing this with Equation (7), it can be seen that the streamwise variation of the equilibrium radius
re follows that of the viscous subcore rinner, but that the variation with fluid parameters ρF and µF and with
freestream velocity U0 does not.

Implications of Model

The 3D simulations and simple model illustrate a number of pitfalls in the interpretation of smoke flow
visualisation for straight conical vortices:

(a) The ‘smoke ring’ effect is independent of the presence (or size) of the viscous subcore.

(b) The variation of smoke ring radius with experimental parameters does not correspond to that of a
viscous subcore, so cannot be used even as an indicator of the viscous core behaviour.

(c) The local ‘smoke ring’ radius is independent of the radius of the outer vortex core r0 (= ax).

The density ratio term 1-1/τP in Equation (6) corresponds to the balance between radial pressure
gradient and centrifugal forces.  For typical smoke particles in a wind tunnel τP is large (of the order of
1000) and hence the particle density ratio has little effect on the smoke ring radius and can safely be
neglected (as in Reference 8).  However, if particle density is reduced towards neutral buoyancy (as for
example in water tunnel testing) the 1-1/τP term (and hence re) approaches zero and the radial pressure
gradient effect can no longer be neglected.  In this case the radial pressure gradient predominates and
the tracer particles collect on the vortex centreline, giving the pronounced ‘core marker’ effect shown in
Figures 1b and 6.
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Equation (7) shows that for a given tracer substance, test Reynolds Number and incidence the smoke
ring radius is directly proportional to particle diameter – emphasising the need to keep the size of
‘heavy’ particles to a minimum, particularly for optical measurement techniques (ie LDA or PIV) where
the larger the smoke ring the larger the radial velocity following error will be.  For buoyant particles the
size will be less significant.  Conversely, for given tracer particle characteristics and test Reynolds
Number the smoke ring radius is directly proportional to swirl ratio (and hence to vortex strength),
indicating that radial velocity measurement errors will increase with incidence.   

Visualisation in Spiral Vortices

Spiral Vortex Flow Model

The flowfield and self-induced motion of a simple helical vortex of constant radius and pitch have been
studied by many workers, who have generated as many different notations.  The work reported here
used elements from a wide range of numerical and theoretical studies, which unfortunately has resulted
in a notation set which is not entirely consistent with the previous section.

We initially assume a fixed right-handed helix with radius a0 and pitch 2πk0 (Figure 7a), with its axis in
the z direction.  In cylindrical coordinates the helix is represented parametrically as

φφθ 00 ,, kzar ===  (9)

The non-dimensional pitch is

β
τ

tan

1
ˆ

0

0 ==
a

k
 (10)

where β is the local helix inclination to the centreline (positive for a right-handed helix).  Figure 7b
shows the normal, tangential and binormal unit vectors commonly used to define vectors relative to the
vortex filament.

x
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θ

p = 2πk0

r = a0

β

U∞

Γ

tangent, t

binormal, b

normal, n

(a) helix parameters

(b) unit vectors in
      filament axes

Figure 7 Helical vortex geometry and coordinate systems

The self-induced velocity component in the principal normal (radial) direction n is zero.  The self-
induced velocity in the binormal direction b is well-known [11] and is given by

( )( )κσ
π
κ

ln
4

−Γ= MSB CV  (11)
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where Γ is the vortex strength, σ the radius of the vortex core and κ the filament curvature.  The
coefficient CMS is a non-linear function of the non-dimensional helix pitch τ, with the majority of
previous work on helix motion using a theoretical ‘large pitch’ approximation [11]. However, Kuibin
[12] gives a semi-empirical curve-fit to his numerical results for intermediate values of the helix pitch.

The self-induced velocity in the tangential direction t (along the filament) is often ignored as not
contributing to the overall helix motion, but may be of significance when considering vortex burst.
This velocity is found to be independent of vortex core size, and is given by

VTB CW
π
κ

4

Γ=  (12)

The coefficient CVT is also a non-linear function of τ, for which a theoretical value for ‘large’ pitch can
be extracted from Reference 11.

The flowfield induced by the helical vortex filament defined in Equation (9) was determined
numerically using the Biot-Savart integral law, combined with a ‘local induction approximation’ for the
core effects to avoid infinite velocities on the filament centreline[11].  Verification of the numerical
method was provided by the comparison with theoretical values for the velocity coefficients CMS and CVT

shown in Figure 8.
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Figure 8 Effect of helix pitch on binormal, and tangential induced velocity components

Numerical experimentation established two preliminary results of some interest:

(a) Firstly, a remarkably good empirical fit to the tangential velocity coefficient CVT is given by

( )
β

β
sin

cos12 −=VTC  (13)

This fit is so good as to suggest that there is some theoretical basis for it; however, this has yet to be
investigated.

(b) Secondly, adding linear longitudinal variations in vortex strength Γ(z) and in helix radius a0(z) has
no significant effect on the induced velocities given by Equations (11) and (12), if the local vortex
and helix parameters are used.  The following analysis should therefore apply equally well to a
conical helix.

Transitions in the Cross-Flow Topology

As a result of the self-induced binormal velocity VB, the helical vortex filament will translate and rotate
with effective velocities [9]

0
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UVV
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−=Ω
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 (14)
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where U∞ is the longitudinal freestream velocity.

The flow-field induced by the vortex will therefore in general be time-varying.  However, following the
approach of Mezic et al [9] we can make a time-dependent change of coordinates from a cylindrical
(r,θ,z) system into a helical (R,Ψ,Z) coordinate system which moves with the vortex, defined (for
constant VT and Ω) as

( )

0

0

k

tVz
Z

Zt

a

r
R

T−
=

−Ω−=Ψ

=

θ  (15)

for which the steady-state velocity field is a function of R and Ψ only.

The time-varying cross-flow streamlines induced by the vortex in the basic (r,θ) plane show no
qualitative change when the helix parameters are varied; however Reference 9 demonstrates that in the
time-shifted steady-state (R,Ψ) plane there are three distinct cross-flow topologies, depending on the
helix pitch, radius and core size (Figure 9a).

Although at first glance this may seem irrelevant to the question of how tracer particles behave in and
around a time-varying spiral vortex burst, it transpires that the cross-flow topology in the (R,Ψ) plane
relates directly to the instantaneous cross-flow topology that would be observed in the (r,θ,) plane for
tracer particles injected upstream, close to the unperturbed vortex core.

non-dimensional pitch, τ
0.0 0.5 1.0 1.5 2.0

relative helix radius, a/σ

0.1

1

10

100

1000

10000

Type I

Type III

Type II

Vtan = 0

Typical Vortex
Burst Region 

(b)

Figure 9 Transition diagram for the cross-flow topology in the R-Ψ plane: (a) from Reference 9, and (b)
replotted as function of pitch τ and radius a/σ

Consider a single ‘ideal’ tracer particle released into a time-varying helical vortex flow at (r0,θ0, z0),
which traces a pathline (rp(t),θp(t), zp(t)).  This single particle pathline will not in general be either a
streamline or a streakline*; however, it can readily be transformed into an equivalent instantaneous
streakline emanating from an injection point rotating with the vortex.  This situation would for example
correspond to smoke injection into the vortex core region upstream of the burst point.

                                                     
* a pathline is the track of a single fluid element, whereas a streakline is a curve joining the instantaneous

positions of fluid elements which have passed through a given point, and a streamline is a curve normal to
which the fluid velocity is instantaneously zero [10];.

(a)
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Assume an injection point rotating with the vortex filament, so that r0 and z0 are fixed and

( ) ( )
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∆+=′

0
0

000

θ
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 (16)

thus allowing for both the rotational and the translational motion of the helix.  The corresponding
streakline at any given time tview is then obtained from the original pathline (rp(t),θp(t),zp(t)) by the
rotation
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tttz view

T
pviewps −
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Using a laser light sheet or equivalent we image the flow at time tview at a given streamwise location zslice.
We denote the time the original tracer particle reached zslice by tslice, so that zslice ≡ zp(tslice).  From Equations
(16) and (9) the instantaneous angular position of the vortex filament at  zslice is

00 k
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V slice
view

T
v +




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


−Ω=θ  (18)

Subtracting Equation (18) from (17) then gives the instantaneous angular and radial positions of the
streakline relative to the vortex filament as
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 (19a)

and

( ) ( )slicepslices trzr = (19b)

which from Equation (15) is equivalent to

( ) ( )
( ) ( )slicepslices

slicepslices

tRazr

tz

0=

Ψ=∆θ
   (20)

In other words, for a given upstream tracer injection point rotating with the vortex helix, the trajectory
(as z is varied) of the instantaneous (r,∆θ) crossflow position of the streakline relative to the helix
therefore corresponds to a pathline in the helical (R,Ψ) crossflow plane.

Returning to Figure 9a, Mezic et al identify 3 classes of cross-flow topology in the (R,Ψ) plane,
depending on the pitch and core size parameters λ and γ [9].  Type I topology is similar to that for a
straight  vortex, with closed orbits around the vortex core.  Types II and III topologies have a second set
of closed orbits about the centre of rotation of the helix.  These types are distinguished by the position
of the fixed point where the separating stream surfaces touch: for Type II this point lies on the axis
between the vortex core and the centre of rotation (ie at Ψ=0), but for Type III the fixed point is
opposite the vortex core at Ψ=±π.

Figure 9b shows the transition diagram of Figure 9a replotted in terms of the non-dimensional pitch τ
(=k0/a0)  and the helix radius relative to the  vortex core size, a0/σ.  The shaded region indicates typical
helix parameters for burst delta wing vortices.  The dashed line marked ‘Vtan = 0’ indicates helices for
which material elements have zero crossflow tangential velocity, where Vtan is given by

ββ cossin BBtan VWV −=  (21)

There is some experimental [7] and computational [13] evidence that this is the case, at least in the early
stages of a spiral vortex breakdown.
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It can be seen from Figure 9b that:

(a) the Type II cross-flow topology is of theoretical interest only, being limited to unrealistically small
cores (or very large radii).

(b) typical burst vortex helices lie very close to the Type I / Type III boundary.

Impact of Transition on Flow Visualisation

Tracer particles in a Type I flow behave as one might intuitively expect for a vortex flow, circling in an
orderly fashion about the vortex core location.  Conversely, tracer particles in a Type III flow display
much more complex behaviour.

‘Fixed Point’ Centre of
Rotation of
Helix

Vortex
Filament

Inner Region Core Region Outer Region (a)

   

 

Figure 10 Typical Type III flowfield (τ = 0.24, a0/σ = 2, RΩ = 0.8): (a) crossflow streamlines in the R-Ψ plane,
and (b) axial velocity contours relative to freestream velocity

This behaviour can be illustrated using a numerical example for a helix of non-dimensional pitch τ =
0.24 (equivalent to a pitch p of 1.5a0)  and radius a0 = 2σ.  The nominal vortex strength Γ and helix
radius a0 are −1.0 and 1.0 respectively, corresponding to a spiral of opposite hand to the vortex rotation
[14].  An appropriate value for the freestream velocity U∞ is obtained from the Rossby Number ( or
swirl ratio) parameter RΩ, defined as

∞
Ω

Γ=
U

R
πσ2

 (22)

Experimental studies indicate that delta wing vortex breakdown occurs at swirl angles of 40° to 50°
[14], corresponding to critical Rossby Numbers of the order of 0.8 to 1.2.

This example generates the Type III crossflow streamlines in the (R,Ψ) plane shown in Figure 10a,
where the dashed lines indicate the separating streamlines bounding the closed orbits around the vortex
core and the centre of rotation.  Figure 10b is a contour plot of the corresponding axial velocities
relative to the freestream velocity given by Equation (22).  The separating crossflow streamlines are
highlighted, as is the zero axial velocity contour.

Recalling from Equation (20) that pathlines (and hence streamlines) in the steady-state (R,Ψ) plane
correspond to the trajectories of streaklines in the time-varying (r,∆θ) plane, we can see from Figure 10
that the behaviour of tracer particles injected into this flow will depend critically on the injection
position relative to the separating streamlines.  These streamlines define three regions in the crossflow
plane:

(a) Inner region – close to the centre of rotation.  Particles injected into this region orbit about the
centre of rotation in the opposite direction to the overall swirl velocity, and tend to move upstream
due to the reverse flow induced by the spiral vortex near the helix centreline.
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(b) Core region – centred on the vortex core.  Particles injected into this region will orbit the vortex
core.  The axial velocity profile in this region is such that the particles tend to move slowly
downstream, but with a cyclic fore-and-aft motion superimposed [9].

(c) Outer region – outside the helix.  Particles injected into this region spread rapidly downstream and
around the outside of the spiral vortex.

This behaviour is graphically illustrated in Figure 11, which shows downstream cross-flow slices for an
initially concentric ‘ideal’ tracer injection pattern centred about the vortex core.  The slices are viewed
from upstream, so that the overall swirl direction is anti-clockwise. The injection pattern (11a)
represents the ‘smoke ring’ phenomena described in the first part of this paper for a straight vortex, and
was sized to cover all three regions listed above.  Also indicated on Figure 11 are the separating cross-
flow streamlines.

      

Figure 11 Cross-flow slices in the r-∆θ plane for an initially concentric injection pattern (Type III flow, ‘ideal’
tracer)

Reverse flows in the ‘inner’ region clear this portion of the flowfield of tracer particles.  Conversely, the
‘core’ region rapidly fills up as we move downstream.  This process is accelerated by the imposed
cyclic fore-and-aft axial motion, since a particular streakline may pass through a given crossflow plane
several times.  Particles in the ‘outer’ region are swept round the outside of the helix in the direction of
the vortex-induced swirl.  For the particular injection pattern shown here, the tracer particles in the
outer region are beginning to clump together into a apparent spiral of opposite hand to the vortex – a
further  example of the potential for seeing spurious flow structures in visualisation of unsteady flows.

For ‘heavy’ smoke-like tracers the behaviour in the outer region becomes of greater significance,
because particles are centrifuged into it out of the vortex core region.  This is illustrated in Figure 12 for
tracer particle and fluid parameters representative of wind tunnel test conditions.

      

Figure 12 Cross-flow slices in the r-∆θ plane for an initially concentric injection pattern (Type III flow, ‘heavy’
tracer particles)

Overall, the emerging flow visualisation image is that of a cylindrical cloud surrounding a void on the
helix centreline  The spiralling vortex core is embedded within this cloud, but is not clearly visible.
This structure in fact strongly resembles the ‘bubble’ burst phenomenon sometimes seen in delta wing
vortex flows (Figure 2 [14]).  Although Figure 9 suggests that typical vortex breakdown helices lie in
the Type I flow regime, it appears likely that transient disturbances could temporarily ‘compress’ the

(a) at initial injection (b) 0.25 a0 downstream (c) 0.50 a0 downstream (d) 0.75 a0 downstream

(a) at initial injection (b) 0.25 a0 downstream (c) 0.50 a0 downstream (d) 0.75 a0 downstream
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helix into the Type III region.  Some experimental support for this hypothesis is given by the
observation that ‘bubble’ bursts are often observed in dynamic pitching tests when the wing is pitching
up - when aerodynamic time delays [16] give a vortex burst point aft of its equivalent steady-state
location.

For confined vortex flows (eg in vortex tube experiments), axisymmetric ‘bubble’ breakdowns are
stable, well-defined and well-documented.  In contrast, ‘bubble’ breakdowns in unconfined delta wing
vortices are unstable, poorly defined and differ considerably in their apparent structure from vortex tube
results.  In particular, bubble breakdowns in vortex tubes are closed (ie limited in their streamwise
extent), while delta wing bubble breakdowns are open-ended.

The above analysis suggests that an alternative explanation for delta wing flows is that ‘bubble’ bursts
may be  simply be an artefact of the tracer flow visualisation technique in an unsteady flow.  More work
will be needed to confirm this, but some support is leant by recent PIV studies [eg 17] which to the
author’s knowledge invariably show spiral structures in the instantaneous flowfield of a burst delta
wing vortex.

Summary

The simple numerical analyses presented in this paper have shown that many of the flow structures
apparently seen in wind and water tunnel visualization studies of delta wing vortices may in fact be
artefacts of the tracer particle flow visualisation technique itself.

Two flow cases were examined using 3D simulations of the paths of ‘real’ tracer particles: a steady-
state straight conical vortex representing an ‘unburst’ leading-edge vortex, and an unsteady helical
vortex representing a ‘burst’ vortex.

For the ‘unburst’ vortex, numerical simulation reproduced two classes of flow structures seen
experimentally: tubular ‘smoke rings’ in wind tunnel test conditions, and vortex core tagging in water
tunnel test conditions.  A simplified analysis showed the smoke ring radius to be a function of the
maximum swirl angle, the tracer particle diameter and relative density, and the Reynolds Number.  The
smoke ring radius was found to be independent of the size of the outer vortex core, and to be unrelated
to  the size (or indeed presence) of the inner viscous subcore.

At typical wind tunnel test conditions the smoke ring radius is large and dominated by the radial
balance between viscous drag and centrifugal force, giving the potential for large radial velocity
following errors in LDA or PIV measurements if particle diameters are not kept to a minimum.  For dye
flow visualisation in water tunnels the swirl-induced radial pressure gradient in the core dominates,
giving smoke ring radii approaching zero and resulting in a clear indication of the vortex core
centreline.

For the ‘burst’ helical vortex, the analysis is greatly simplified by transforming the unsteady flow into a
helical coordinate system moving with the vortex.  It is shown that pathlines in this steady-state
coordinate system can be directly related to instantaneous streaklines emanating from an injection point
rotating with the vortex.  The critical feature of the flow in the time-shifted helical coordinate system is
that there are three possible crossflow topologies, depending on the helix pitch and vortex core size.
Typical burst vortex helices lie near to the boundary between a normal swirling flow centred on the
vortex core (Type I) and a more complex topology with closed orbits about both the vortex core and the
centre of rotation of the helix, surrounded by a normal swirling flow (Type III).

With a representative freestream velocity superimposed, axial velocities in the inner region centred on
the centre of rotation of the helix are negative (ie reverse flow), but are positive in the outer swirling
flow.  In the vortex core region the mean axial velocity is positive, but there are areas of reverse flow.
As a consequence, tracer particles in the inner region are convected upstream, tracers in the outer region
are swept downstream and around the outside of the helix, while tracers in the vortex core region move
more slowly downstream and spread into an arc centred on the core.  If the particles are ‘heavy’ (eg
smoke in a wind tunnel), then centrifugal forces rapidly clear out the core region.
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Overall, the emerging flow visualisation image for a Type III helix is that of a cylindrical cloud
surrounding a void on the helix centreline – a structure which strongly resembles the open-ended
‘bubble’ burst phenomenon sometimes seen in delta wing vortex flows.  Assuming that transient
disturbances could move a Type I burst vortex helix temporarily into the Type III flow regime, it is
therefore postulated that an alternative explanation for intermittent ‘bubble’ bursts is that they are in
fact an artefact of the tracer flow visualisation technique in an unsteady flow.
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Question by Dr. Luckring:  As a comment, I think it would be interesting to consider using
your model/analysis to assess the tube vortex breakdown results published by Liebovich &
Fahler from Cornell (Physics of Fluids).
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